metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[(Pyridine-2,6-dicarboxylato)copper(II)]- μ -(pyridine-2,6-dicarboxylato)-[bis(ethylenediamine)copper(II)]- μ -(pyridine-2,6dicarboxylato)-[(pyridine-2,6-dicarboxylato)copper(II)] ethylenediamine monosolvate tetrahydrate

Amir Shokooh Saljooghi,^a* Hadi Amiri Rudbari,^b Francesco Nicolò,^b Maliheh Zahmati^a and Fatemeh Delavar Mendi^a

^aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and ^bDipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Università di Messina, Salita Sperone, 31 Contrada Papardo, 98166 Messina, Italy Correspondence e-mail: amir.saljooghi@yahoo.com

Received 28 April 2012; accepted 15 May 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.100; data-to-parameter ratio = 28.1.

The title compound, $[Cu_3(C_7H_3NO_4)_4(C_2H_8N_2)_2]\cdot C_2H_8N_2$ ·-4H₂O, was obtained by the reaction of copper(II) acetate dihydrate with pyridine-2,6-dicarboxylic acid (H₂dipic) and ethylenediamine (en) in an aqueous solution. All of the Cu^{II} atoms in the trinuclear centrosymmetric title complex are sixcoordinated in a distorted octahedral geometry with N₂O₄ and N₄O₂ environments for the outer and central Cu^{II} atoms, respectively. Various interactions, including numerous O– H···O and C–H···O hydrogen bonds and C–O··· π stacking of the pyridine and carboxylate groups [O···centroid distances = 3.669 (2) and 3.668 (2) Å] are observed in the crystal structure.

Related literature

For metal complexes formed by pyridinedicarboxylic acids, see: Aghabozorg *et al.* (2006); Burdock (1996); Douki *et al.* (2005); Kazuhiro *et al.* (1994); Murakami *et al.* (2003); Park *et al.* (2007); Xie *et al.* (2006).

Experimental

Crystal data

 $\begin{bmatrix} Cu_3(C_7H_3NO_4)_4(C_2H_8N_2)_2 \end{bmatrix} - \\ C_2H_8N_2 \cdot 4H_2O \\ M_r = 1105.43 \\ Monoclinic, P2_1/n \\ a = 8.152 (2) Å \\ b = 20.538 (5) Å \\ c = 12.736 (3) Å$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{min} = 0.583, T_{max} = 0.747$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.035\\ wR(F^2) &= 0.100\\ S &= 1.02\\ 9453 \text{ reflections}\\ 336 \text{ parameters}\\ 5 \text{ restraints} \end{split}$$

Mo $K\alpha$ radiation $\mu = 1.58 \text{ mm}^{-1}$ T = 293 K $0.51 \times 0.28 \times 0.12 \text{ mm}$

 $\beta = 93.44 \ (2)^{\circ}$

Z = 2

V = 2128.5 (10) Å³

35349 measured reflections 9453 independent reflections 6734 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.47 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N4−H4 <i>B</i> ···O1	0.84 (2)	2.07 (2)	2.8697 (17)	160 (2)
$O10-H10B\cdots O2$	0.92 (2)	1.87 (2)	2.7927 (17)	176 (3)
$N5-H5A\cdots O9$	0.89	1.93	2.808 (2)	167
O9−H9 <i>B</i> ···O5	0.88 (2)	2.50 (2)	3.211 (2)	139 (3)
O9−H9 <i>B</i> ···O6	0.88 (2)	1.96 (2)	2.793 (2)	159 (3)
$N3-H3A\cdotsO6^{i}$	0.87 (2)	2.51 (2)	3.218 (2)	138.5 (18)
$O9-H9A\cdots O10^{ii}$	0.83 (2)	2.10 (2)	2.893 (3)	160 (3)
$N5-H5B\cdots O9^{iii}$	0.89	2.59	3.106 (2)	118
$N5-H5B\cdotsO10^{iv}$	0.89	2.06	2.9151 (19)	160
$N5-H5C\cdots O4^{v}$	0.89	1.82	2.6882 (18)	166
$N4-H4A\cdotsO8^{vi}$	0.843 (19)	2.482 (19)	3.2079 (19)	144.8 (17)
$O10-H10A\cdots O8^{vii}$	0.88 (2)	1.82 (2)	2.6824 (17)	165 (2)
$N3-H3B\cdots O8^{vii}$	0.80(2)	2.31 (3)	3.0664 (19)	156 (2)
N3-H3 B ···O7 ^{vii}	0.80 (2)	2.43 (2)	3.1383 (17)	147 (2)
Symmetry codes:	(i) $-x + \frac{1}{2}, y - \frac{1}{2}$	$-\frac{1}{2}, -z + \frac{3}{2};$ (ii	i) $x - \frac{1}{2}, -y + \frac{1}{2}$	$\frac{3}{2}, z + \frac{1}{2};$ (iii)

Symmetry codes: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (iii) -x, -y + 2, -z + 1; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) -x + 1, -y + 2, -z + 1; (vi) x - 1, y, z; (vii) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2066).

References

Aghabozorg, H., Ghasemikhah, P., Ghadermazi, M., Attar Gharamaleki, J. & Sheshmani, S. (2006). Acta Cryst. E62 2269–2271.

Bruker (2007). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Burdock, G. A. (1996). *Encyclopedia of Food and Color Additives*, Vol. 3. Boca Raton: CRC Press.
- Douki, T., Setlow, B. & Setlow, P. (2005). J. Photochem. Photobiol. B, 4, 591–597.
- Kazuhiro, Y., Noriko, Y. & Tadayasu, F. (1994). Eur. Patent No. EP0603-165.

Murakami, K., Tanemura, Y. & Yoshino, M. (2003). J. Nutr. Biochem. 14, 99–103.

- Park, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360 2819–2823.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xie, J. R. H., Smitth, V. H. Jr & Allen, R. E. (2006). Chem. Phys. 322 254-268.

supplementary materials

Acta Cryst. (2012). E68, m830-m831 [doi:10.1107/S1600536812022039]

[(Pyridine-2,6-dicarboxylato)copper(II)]- μ -(pyridine-2,6-dicarboxylato)-[bis-(ethylenediamine)copper(II)]- μ -(pyridine-2,6-dicarboxylato)-[(pyridine-2,6-dicarboxylato)copper(II)] ethylenediamine monosolvate tetrahydrate

Amir Shokooh Saljooghi, Hadi Amiri Rudbari, Francesco Nicolò, Maliheh Zahmati and Fatemeh Delavar Mendi

Comment

Pyridine-2,6-dicarboxylic acid (also known as 2,6-dicarboxypyridine and as dipicolinic acid, H₂dipic) is a water-soluble, commercially available, cheap and versatile N.O-chelator possessing diverse coordination modes, with a recognized biological function in the body metabolism (Douki et al., 2005), and in a variety of processes as an enzyme inhibitor (Murakami et al., 2003), plant preservative (Kazuhiro et al., 1994), and food sanitizer (Burdock, 1996),. The complexation of transition metal ions from dipicolinic acid has been the subject of numerous reports. The reasons for this interest are the ability of the ligand so it gave stable chelates with different coordination modes (Park et al., 2007), affinity to form strong hydrogen bonds and its biological activity in human metabolism (Xie et al., 2006). A lots of dipicolinate complexes of transition metals and main groups are known and reported (Xie et al., 2006; Aghabozorg et al., 2006). Here, we report the crystal structure of the title binuclear complex, $[Cu_3(C_7H_3NO_4)_4(C_2H_8N_2)_2].(C_2H_8N_2).2H_2O$, in which the Pyridine-2,6-dicarboxylic acid ($C_7H_3NO_4$) species acts as a momo and tridentate ligand. In the crystal structure, the copper atoms are in three types. All copper atoms exhibit an distorted octahedral coordination geometry. In the crystal structure, Cu (1) is coordinated by two dipicolinic acid ligands, and Cu (2) is coordinated by two ethylenediamine molecules and two uncoordinated O atoms of two dipicolinic acid groups linked to Cu (1). As shown in Fig.1, this causes that Cu (2) makes a bridge between two Cu (1) atoms. The bond distances of Cu(1)–O(1) and Cu(1)–O(3) is longer than Cu(1)–N(1), Cu(1)–N(2), Cu(1)–O(5) and Cu(1)–O(7) bond distances due to Jahn–Teller effect. Also 0.74 Å difference between Cu(2)-O and Cu(2)-N bonds, due to Jahn-Teller effect. There are extensive intermolecular O-H···O, N-H···O and weak C—H···O hydrogen bonds, which cause the stability of the crystal structure (Fig. 2).

Experimental

To an aqueous solution of Copper(II) acetate, an aqueous solution of H_2 dipic and en in 1:1:1 molar ratio was added. The final volume was 30 ml. After less than 1 h stirring, the obtained blue solution was left for 3 days. Then the blue crystals of the title compound were obtained for X-ray crystallography.

Refinement

The H atoms of the water molecules were found in difference Fourier maps and the O–H bond lengths were constrained to 0.85 Å. The H atoms from C–H groups were placed in calculated positions. All H atoms were refined in riding model approximation with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

Molecular structure and atom labeling scheme for title compound with displacement ellipsoids at the 50% probability level.

Figure 2

A packing view of the title compound. Hydrogen bonds are shown with dashed lines.

[(Pyridine-2,6-dicarboxylato)copper(II)]- μ -(pyridine-2,6-dicarboxylato)- [bis(ethylenediamine)copper(II)]- μ -(pyridine-2,6-dicarboxylato)-[(pyridine- 2,6-dicarboxylato)copper(II)] ethylenediamine monosolvate tetrahydrate

Crystal data

$[Cu_{3}(C_{7}H_{3}NO_{4})_{4}(C_{2}H_{8}N_{2})_{2}]\cdot C_{2}H_{8}N_{2}\cdot 4H_{2}O$
$M_r = 1105.43$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 8.152 (2) Å
b = 20.538 (5) Å
c = 12.736 (3) Å
$\beta = 93.44 \ (2)^{\circ}$
$V = 2128.5 (10) \text{ Å}^3$
Z = 2

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{\min} = 0.583, T_{\max} = 0.747$

Primary atom site location: structure-invariant

Refinement

Refinement on F^2

 $wR(F^2) = 0.100$ S = 1.02

9453 reflections

336 parameters

direct methods

5 restraints

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.035$

F(000) = 1134 $D_x = 1.725 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8052 reflections $\theta = 2.6-32.5^{\circ}$ $\mu = 1.58 \text{ mm}^{-1}$ T = 293 KIrregular, blue $0.51 \times 0.28 \times 0.12 \text{ mm}$

35349 measured reflections 9453 independent reflections 6734 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 35.2^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -13 \rightarrow 13$ $k = -33 \rightarrow 33$ $l = -20 \rightarrow 20$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0528P)^2 + 0.1097P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 0.48 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.47 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cul	0.41369 (2)	0.734887 (8)	0.553105 (12)	0.02551 (5)

N1	0.38865 (14)	0.73453 (5)	0.39949 (8)	0.02225 (19)
05	0.26265 (15)	0.81147 (5)	0.60629 (9)	0.0362 (2)
O3	0.58419 (15)	0.81797 (6)	0.50570 (8)	0.0368 (2)
N2	0.44168 (14)	0.72476 (5)	0.70320 (8)	0.02212 (19)
C2	0.29612 (16)	0.68844 (6)	0.35084 (10)	0.0236 (2)
C6	0.46747 (16)	0.77861 (6)	0.34388 (10)	0.0233 (2)
C9	0.36906 (16)	0.76619 (6)	0.76552 (10)	0.0229 (2)
O1	0.21166 (16)	0.65984 (5)	0.51771 (8)	0.0374 (3)
O2	0.15002 (16)	0.59160 (5)	0.38441 (9)	0.0401 (3)
C13	0.53495 (16)	0.67598 (6)	0.74101 (10)	0.0240 (2)
C10	0.38875 (18)	0.75991 (7)	0.87363 (11)	0.0302 (3)
H10	0.3384	0.7889	0.9177	0.036*
O7	0.58610 (16)	0.65866 (6)	0.56406 (8)	0.0401 (3)
O6	0.21260 (16)	0.86312 (6)	0.75532 (11)	0.0468 (3)
C3	0.27609 (18)	0.68619 (7)	0.24224 (10)	0.0270 (2)
H3	0.2112	0.6542	0.2089	0.032*
C1	0.21182 (18)	0.64213 (6)	0.42338 (11)	0.0277 (3)
04	0.62267 (16)	0.87514 (5)	0.36029 (9)	0.0413 (3)
C5	0.45307 (18)	0.77855 (7)	0.23509 (10)	0.0276 (3)
H5	0.5090	0.8091	0.1969	0.033*
C7	0.56691 (17)	0.82794 (7)	0.40915 (11)	0.0269 (2)
C4	0.35429 (19)	0.73235 (7)	0.18424 (11)	0.0296 (3)
H4	0.3405	0.7323	0.1112	0.036*
C11	0.48516 (19)	0.70947(9)	0.91474 (11)	0.0353(3)
H11	0.5004	0.7044	0.9872	0.042*
C12	0.55921 (18)	0.66641 (8)	0.84784(11)	0.0312(3)
H12	0.6234	0.6321	0.8745	0.037*
C8	0.27279(17)	0.81864(7)	0.70493(12)	0.0290(3)
Cu2	0.0000	0.5000	0.5000	0.03467(7)
08	0 70149 (17)	0 59043 (6)	0.68212 (10)	0.0447(3)
C14	0.61377 (19)	0.63770(7)	0.65613(12)	0.0297(3)
N4	0.06892(19)	0.55367 (6)	0.62685(10)	0.0237(3)
N3	0.2066(2)	0.45052(7)	0.53830(13)	0.0394(3)
010	0.2600(2)	0.52256(7)	0.21358 (10)	0.0571(3)
C15	0.2010(2) 0.3169(2)	0.32230(7) 0.49316(9)	0.60259 (14)	0.0394(3)
H15A	0.3641	0.5262	0.5591	0.0371(3)
H15R	0.4054	0.4681	0.6370	0.047*
C16	0.1031 0.2137(3)	0.52425(9)	0.6370 0.68297(13)	0.0442(4)
H164	0.1795	0.4917	0.7324	0.053*
H16B	0.2767	0.5574	0.7218	0.053*
N5	0.28169(16)	1.02440(7)	0.7210 0.51530(11)	0.035
H5A	0.1986	1.02440 (7)	0.5433	0.0532 (5)
H5R	0.2551	1.0331	0.4479	0.053*
H5C	0.3024	1.0615	0.5498	0.053*
09	0.5024	0.94330 (9)	0.60524 (16)	0.055
C17	0.0307(2) 0.4283(2)	0.98283 (8)	0.5032 + (10) 0.52329 (15)	0.0009(3)
H17A	0.4057	0.9423	0.4860	0.047*
H17R	0.4562	0.9726	0.5966	0.047*
H4A	-0.003(2)	0 5641 (9)	0.6683 (15)	0.033 (5)*
TT 17 F	0.000 (2)	0.0011())	0.0000 (10)	0.000 (0)

H3A	0.181 (3)	0.4176 (11)	0.5774 (18)	0.049 (6)*
H4B	0.098 (3)	0.5904 (10)	0.6056 (18)	0.050 (6)*
H3B	0.249 (3)	0.4324 (11)	0.491 (2)	0.054 (6)*
H10A	0.273 (3)	0.4821 (7)	0.2364 (17)	0.055 (6)*
H10B	0.228 (3)	0.5469 (10)	0.2693 (18)	0.079 (8)*
H9A	-0.027 (3)	0.9446 (15)	0.645 (2)	0.082 (10)*
H9B	0.095 (4)	0.9106 (12)	0.640 (2)	0.099 (11)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Cu1	0.03397 (10)	0.02360 (8)	0.01879 (7)	0.00059 (6)	0.00018 (6)	0.00041 (6)
N1	0.0263 (5)	0.0217 (4)	0.0186 (4)	-0.0015 (4)	0.0007 (4)	0.0018 (4)
O5	0.0444 (6)	0.0339 (5)	0.0293 (5)	0.0062 (5)	-0.0055 (4)	0.0029 (4)
O3	0.0466 (6)	0.0369 (5)	0.0262 (5)	-0.0096(5)	-0.0049 (4)	0.0008 (4)
N2	0.0255 (5)	0.0208 (4)	0.0200 (4)	0.0013 (4)	0.0007 (4)	-0.0013 (4)
C2	0.0280 (6)	0.0219 (5)	0.0209 (5)	-0.0012 (4)	0.0006 (4)	-0.0001 (4)
C6	0.0249 (6)	0.0219 (5)	0.0232 (5)	-0.0001 (4)	0.0017 (4)	0.0024 (4)
C9	0.0227 (5)	0.0232 (5)	0.0228 (5)	0.0000 (4)	0.0015 (4)	-0.0028 (4)
O1	0.0582 (7)	0.0317 (5)	0.0227 (4)	-0.0143 (5)	0.0058 (5)	0.0006 (4)
O2	0.0550 (7)	0.0317 (5)	0.0341 (6)	-0.0186 (5)	0.0084 (5)	-0.0054 (4)
C13	0.0267 (6)	0.0227 (5)	0.0230 (5)	0.0017 (5)	0.0038 (5)	0.0012 (4)
C10	0.0312 (7)	0.0365 (7)	0.0233 (6)	0.0025 (6)	0.0040 (5)	-0.0056 (5)
O7	0.0601 (8)	0.0373 (6)	0.0235 (5)	0.0146 (5)	0.0066 (5)	-0.0020 (4)
O6	0.0555 (7)	0.0349 (6)	0.0494 (7)	0.0197 (5)	-0.0035 (6)	-0.0106 (5)
C3	0.0325 (7)	0.0269 (6)	0.0214 (5)	-0.0002(5)	-0.0006(5)	-0.0038 (5)
C1	0.0349 (7)	0.0232 (5)	0.0251 (6)	-0.0056 (5)	0.0029 (5)	0.0002 (5)
O4	0.0551 (7)	0.0306 (5)	0.0385 (6)	-0.0163 (5)	0.0059 (5)	0.0026 (5)
C5	0.0321 (7)	0.0289 (6)	0.0221 (5)	0.0011 (5)	0.0042 (5)	0.0061 (5)
C7	0.0276 (6)	0.0241 (5)	0.0290 (6)	-0.0013 (5)	0.0018 (5)	0.0007 (5)
C4	0.0358 (7)	0.0349 (7)	0.0181 (5)	0.0043 (6)	0.0024 (5)	0.0000 (5)
C11	0.0363 (8)	0.0512 (9)	0.0185 (5)	0.0044 (7)	0.0014 (5)	0.0025 (6)
C12	0.0319 (7)	0.0354 (7)	0.0264 (6)	0.0074 (6)	0.0021 (5)	0.0077 (5)
C8	0.0278 (6)	0.0244 (6)	0.0342 (7)	0.0022 (5)	-0.0038 (5)	-0.0017 (5)
Cu2	0.03599 (14)	0.03264 (13)	0.03617 (14)	0.00045 (10)	0.00872 (11)	-0.01548 (11)
08	0.0584 (8)	0.0315 (5)	0.0455 (7)	0.0218 (5)	0.0139 (6)	0.0061 (5)
C14	0.0377 (7)	0.0231 (5)	0.0287 (6)	0.0051 (5)	0.0064 (5)	-0.0012 (5)
N4	0.0461 (7)	0.0260 (5)	0.0292 (6)	-0.0023 (5)	0.0151 (5)	-0.0052 (5)
N3	0.0467 (8)	0.0333 (7)	0.0395 (7)	0.0063 (6)	0.0122 (6)	-0.0102 (6)
O10	0.0888 (11)	0.0350 (6)	0.0313 (6)	0.0095 (7)	0.0053 (6)	0.0035 (5)
C15	0.0423 (9)	0.0407 (8)	0.0352 (8)	0.0023 (7)	0.0036 (7)	-0.0012 (7)
C16	0.0643 (12)	0.0405 (8)	0.0279 (7)	0.0044 (8)	0.0033 (7)	-0.0041 (6)
N5	0.0316 (6)	0.0360 (6)	0.0377 (7)	-0.0032 (5)	-0.0007 (5)	-0.0016 (5)
09	0.0400 (7)	0.0670 (10)	0.0921 (12)	-0.0022 (7)	-0.0090 (8)	0.0472 (9)
C17	0.0366 (8)	0.0355 (7)	0.0447 (9)	-0.0001(6)	0.0070 (7)	0.0026(7)

Geometric parameters (Å, °)

Cu1—N2	1.9228 (11)	C4—H4	0.9300
Cu1—N1	1.9549 (11)	C11—C12	1.391 (2)

Cu1—O7	2.1030 (11)	C11—H11	0.9300
Cu1—O5	2.1328 (11)	C12—H12	0.9300
Cu1—O1	2.2808 (11)	Cu2—N3 ⁱ	2.0019 (16)
Cu1—O3	2.3041 (11)	Cu2—N3	2.0019 (16)
N1—C6	1.3375 (16)	Cu2—N4	2.0080 (13)
N1—C2	1.3390 (17)	Cu2—N4 ⁱ	2.0080 (13)
O5—C8	1.2626 (18)	O8—C14	1.2389 (17)
O3—C7	1.2461 (18)	N4—C16	1.473 (2)
N2—C9	1.3271 (16)	N4—H4A	0.843 (19)
N2—C13	1.3303 (16)	N4—H4B	0.84 (2)
C2—C3	1.3837 (18)	N3—C15	1.469 (2)
C2—C1	1.5188 (18)	N3—H3A	0.87 (2)
C6—C5	1.3834 (18)	N3—H3B	0.80 (2)
C6—C7	1.5146 (19)	O10—H10A	0.883 (15)
C9—C10	1.3826 (19)	O10—H10B	0.921 (16)
C9—C8	1.5162 (19)	C15—C16	1.505 (2)
01	1.2553 (17)	C15—H15A	0.9700
02	1.2439 (17)	C15—H15B	0.9700
C13—C12	1.3772 (19)	C16—H16A	0.9700
C13 - C14	1.5109(18)	C16—H16B	0.9700
C10—C11	1.384 (2)	N5-C17	1.467 (2)
C10—H10	0.9300	N5—H5A	0.8900
07—C14	1 2567 (18)	N5—H5B	0.8900
06	1 2350 (18)	N5—H5C	0.8900
C3-C4	1 381 (2)	09—H9A	0.831(17)
C3—H3	0.9300	09—H9B	0.875(17)
04-C7	1 2520 (17)	$C17 - C17^{ii}$	1.516(3)
C5-C4	1.2820(17)	C17—H17A	0.9700
C5—H5	0.9300	C17—H17B	0.9700
	0.7200		0.9700
N2—Cu1—N1	173.52 (4)	C10—C11—H11	119.9
N2—Cu1—O7	79.31 (4)	C12—C11—H11	119.9
N1—Cu1—O7	95.33 (4)	C13—C12—C11	118.20 (13)
N2—Cu1—O5	78.49 (4)	C13—C12—H12	120.9
N1—Cu1—O5	107.04 (4)	C11—C12—H12	120.9
O7—Cu1—O5	157.55 (4)	O6—C8—O5	126.80 (14)
N2—Cu1—O1	99.47 (4)	O6—C8—C9	118.08 (13)
N1—Cu1—O1	76.64 (4)	O5—C8—C9	115.12 (12)
O7—Cu1—O1	88.96 (5)	N3 ⁱ —Cu2—N3	180.0
O5—Cu1—O1	97.89 (5)	N3 ⁱ —Cu2—N4	96.20 (6)
N2—Cu1—O3	107.65 (4)	N3—Cu2—N4	83.80 (6)
N1—Cu1—O3	76.64 (4)	$N3^{i}$ —Cu2—N4 ⁱ	83.80 (6)
O7—Cu1—O3	99.06 (5)	N3—Cu2—N4 ⁱ	96.20 (6)
O5—Cu1—O3	84.60 (5)	N4—Cu2—N4 ⁱ	180.00 (6)
O1—Cu1—O3	152.68 (4)	O8—C14—O7	125.87 (13)
C6—N1—C2	120.58 (11)	O8—C14—C13	118.69 (13)
C6—N1—Cu1	120.18 (9)	O7—C14—C13	115.42 (12)
C2—N1—Cu1	119.20 (8)	C16—N4—Cu2	110.04 (10)
C8—O5—Cu1	113.42 (9)	C16—N4—H4A	111.8 (13)

C7—O3—Cu1	110.25 (9)	Cu2—N4—H4A	118.2 (13)
C9—N2—C13	122.16 (11)	C16—N4—H4B	106.9 (15)
C9—N2—Cu1	119.64 (9)	Cu2—N4—H4B	107.7 (16)
C13—N2—Cu1	118.20 (8)	H4A—N4—H4B	101.2 (19)
N1—C2—C3	121.04 (12)	C15—N3—Cu2	108.13 (10)
N1—C2—C1	115.09 (11)	C15—N3—H3A	107.5 (15)
C3—C2—C1	123.82 (12)	Cu2—N3—H3A	108.0 (14)
N1—C6—C5	121.00 (12)	C15—N3—H3B	114.6 (17)
N1—C6—C7	114.86 (11)	Cu2—N3—H3B	116.4 (17)
C5—C6—C7	124.12 (12)	H3A—N3—H3B	101 (2)
N2-C9-C10	120.42 (12)	H10A—O10—H10B	106.7 (17)
N2—C9—C8	112.77 (11)	N3—C15—C16	106.47 (15)
C10—C9—C8	126.78 (12)	N3—C15—H15A	110.4
C1	110.04 (9)	C16—C15—H15A	110.4
N2-C13-C12	120.68 (12)	N3—C15—H15B	110.4
N2-C13-C14	113 03 (11)	C16—C15—H15B	110.4
C12-C13-C14	12620(12)	H15A—C15—H15B	108.6
C9-C10-C11	11842(12)	N4-C16-C15	107.96 (13)
C9-C10-H10	120.8	N4-C16-H16A	110.1
$C_{11} - C_{10} - H_{10}$	120.8	C_{15} C_{16} H_{16A}	110.1
C14 - 07 - Cu1	113 50 (9)	N4-C16-H16B	110.1
C4-C3-C2	118.76 (13)	C_{15} C_{16} H_{16B}	110.1
$C_4 - C_3 - H_3$	120.6	H_{16A} $-C_{16}$ $-H_{16B}$	108.4
C2_C3_H3	120.6	$C17$ _N5_H5A	100.4
02-01-01	126.87 (13)	C17_N5_H5B	109.5
02 - 01 - 01	117.84(12)	H_{5A} N5 H_{5B}	109.5
02 - 01 - 02	117.04(12) 115.30(11)	113A - 115B C17 N5 H5C	109.5
$C_{1} = C_{1} = C_{2}$	113.30(11) 118.86(12)	$H_{5A} = H_{5C}$	109.5
$C_{4} = C_{5} = C_{6}$	118.80 (12)	H5R N5 H5C	109.5
C4-C5-H5	120.6		109.3
$C_0 = C_3 = H_3$	120.0 126.50(14)	$M_{A} = 09 = M_{B}$	91(3)
03 - 07 - 04	120.30(14) 117.18(12)	$N_{3} = C_{17} = C_{17}$	110.25 (17)
03 - 07 - 00	117.10(12) 116.22(12)	$N_{3} = C_{17} = H_{17} A$	109.0
04-07-00	110.32(13) 110.72(12)	$C1/^{}C1/H1/A$	109.0
C_{5}	119.72 (12)	$N_{J} = C_{I} / = H_{I} / B$	109.0
$C_3 = C_4 = H_4$	120.1	$U_1/T_{}U_1/T_{}H_1/B$	109.0
C_{3} C_{4} H_{4}	120.1 120.11(12)	HI/A - CI/-HI/B	108.1
C10-C11-C12	120.11 (13)		
07 Cul N1 C6	-100 17 (11)	C8 C9 C10 C11	-178 26 (14)
O = Cu1 = N1 = C0	-100.17(11)	$N_{2} = C_{11} = 0.7 = C_{14}$	-178.30(14)
O_{3} C_{11} N_{1} C_{6}	172.17 (11)	$N_2 - Cu_1 - O_7 - C_14$	0.00(11)
$O_1 = Cu_1 = N_1 = Co$	1/2.1/(11)	N1 - Cu1 - O7 - C14	-109.43(11)
O_{3} C_{u1} N_{1} C_{2}	-2.10(10)	03 - Cu1 - 07 - C14	13.4(2)
$O_1 = Cu_1 = N_1 = C_2$	-104.25(10)	$O_1 - C_{11} - O_7 - C_{14}$	72.70 (12)
$O_{1} = C_{11} = N_{1} = C_{2}$	104.23(10) -0.06(10)	$V_{1} = V_{1} = V_{1} = V_{1} = V_{1}$	(12)
$O_1 - C_{11} - N_1 - C_2$	-9.90(10)	$1 \times 1 - 1 \times 2 - 1 \times 2 - 1 \times 4$	0.3(2)
$V_2 = C_{11} = V_1 = C_2$	1/3.//(11)	$C_1 - C_2 - C_3 - C_4$	1/7.04(13)
N1 Cy1 O5 C9	-177.25(10)	$C_{\rm u1} = 01 = 01 = 02$	-20.20(14)
$N1 - Cu1 - Co - C\delta$	-1/7.35(10)	$C_{II} = O_{I} = O_{I} = O_{I}$	-20.20(10)
0/—Cu1—O5—C8	-2.43 (19)	N1 - C2 - C1 - O2	-166.8/(13)

O1—Cu1—O5—C8	104.28 (11)	C3—C2—C1—O2	15.7 (2)
O3—Cu1—O5—C8	-103.11 (11)	N1-C2-C1-O1	13.55 (19)
N2—Cu1—O3—C7	-177.91 (10)	C3-C2-C1-O1	-163.89 (14)
N1—Cu1—O3—C7	7.14 (10)	N1-C6-C5-C4	0.6 (2)
O7—Cu1—O3—C7	100.50 (10)	C7—C6—C5—C4	-177.81 (13)
O5—Cu1—O3—C7	-101.83 (10)	Cu1—O3—C7—O4	169.07 (13)
O1—Cu1—O3—C7	-5.07 (16)	Cu1—O3—C7—C6	-10.36 (15)
O7—Cu1—N2—C9	174.33 (11)	N1—C6—C7—O3	9.37 (19)
O5—Cu1—N2—C9	-2.34 (10)	C5—C6—C7—O3	-172.16 (14)
O1—Cu1—N2—C9	-98.55 (10)	N1-C6-C7-O4	-170.12 (13)
O3—Cu1—N2—C9	78.13 (11)	C5—C6—C7—O4	8.4 (2)
O7—Cu1—N2—C13	-5.37 (10)	C6—C5—C4—C3	-1.9 (2)
O5—Cu1—N2—C13	177.95 (11)	C2—C3—C4—C5	1.5 (2)
O1—Cu1—N2—C13	81.74 (10)	C9—C10—C11—C12	-0.2 (2)
O3—Cu1—N2—C13	-101.58 (10)	N2-C13-C12-C11	-0.7 (2)
C6—N1—C2—C3	-1.7 (2)	C14—C13—C12—C11	175.45 (14)
Cu1—N1—C2—C3	-179.57 (10)	C10-C11-C12-C13	0.6 (2)
C6—N1—C2—C1	-179.23 (12)	Cu1—O5—C8—O6	171.92 (14)
Cu1—N1—C2—C1	2.91 (15)	Cu1—O5—C8—C9	-8.36 (16)
C2—N1—C6—C5	1.2 (2)	N2-C9-C8-O6	-173.61 (13)
Cu1—N1—C6—C5	179.08 (10)	C10—C9—C8—O6	4.7 (2)
C2—N1—C6—C7	179.77 (11)	N2—C9—C8—O5	6.65 (18)
Cu1—N1—C6—C7	-2.39 (15)	C10—C9—C8—O5	-175.07 (14)
C13—N2—C9—C10	0.1 (2)	Cu1—O7—C14—O8	174.91 (13)
Cu1—N2—C9—C10	-179.56 (10)	Cu1—O7—C14—C13	-6.97 (17)
C13—N2—C9—C8	178.54 (11)	N2-C13-C14-O8	-178.92 (13)
Cu1—N2—C9—C8	-1.15 (15)	C12-C13-C14-O8	4.7 (2)
N2—Cu1—O1—C1	-157.62 (10)	N2-C13-C14-O7	2.82 (19)
N1—Cu1—O1—C1	17.09 (10)	C12—C13—C14—O7	-173.59 (15)
O7—Cu1—O1—C1	-78.64 (11)	N3 ⁱ —Cu2—N4—C16	173.36 (12)
O5—Cu1—O1—C1	122.82 (10)	N3—Cu2—N4—C16	-6.64 (12)
O3—Cu1—O1—C1	29.29 (16)	N4—Cu2—N3—C15	-22.24 (11)
C9—N2—C13—C12	0.3 (2)	$N4^{i}$ —Cu2—N3—C15	157.76 (11)
Cu1—N2—C13—C12	-179.98 (11)	Cu2—N3—C15—C16	45.93 (16)
C9—N2—C13—C14	-176.31 (12)	Cu2—N4—C16—C15	33.54 (17)
Cu1—N2—C13—C14	3.39 (15)	N3—C15—C16—N4	-52.17 (18)
N2-C9-C10-C11	-0.2 (2)		

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A
N4—H4 <i>B</i> …O1	0.84 (2)	2.07 (2)	2.8697 (17)	160 (2)
O10—H10B…O2	0.92 (2)	1.87 (2)	2.7927 (17)	176 (3)
N5—H5 <i>A</i> ···O9	0.89	1.93	2.808 (2)	167
О9—H9 <i>B</i> ⋯О5	0.88 (2)	2.50 (2)	3.211 (2)	139 (3)
О9—H9 <i>B</i> ···О6	0.88 (2)	1.96 (2)	2.793 (2)	159 (3)
N3—H3 <i>A</i> ···O6 ⁱⁱⁱ	0.87 (2)	2.51 (2)	3.218 (2)	138.5 (18)
O9—H9A…O10 ^{iv}	0.83 (2)	2.10 (2)	2.893 (3)	160 (3)

supplementary materials

0.89	2.59	3.106 (2)	118
0.89	2.06	2.9151 (19)	160
0.89	1.82	2.6882 (18)	166
0.843 (19)	2.482 (19)	3.2079 (19)	144.8 (17)
0.88 (2)	1.82 (2)	2.6824 (17)	165 (2)
0.80 (2)	2.31 (3)	3.0664 (19)	156 (2)
0.80 (2)	2.43 (2)	3.1383 (17)	147 (2)
	0.89 0.89 0.89 0.843 (19) 0.88 (2) 0.80 (2) 0.80 (2)	0.892.590.892.060.891.820.843 (19)2.482 (19)0.88 (2)1.82 (2)0.80 (2)2.31 (3)0.80 (2)2.43 (2)	0.892.593.106 (2)0.892.062.9151 (19)0.891.822.6882 (18)0.843 (19)2.482 (19)3.2079 (19)0.88 (2)1.82 (2)2.6824 (17)0.80 (2)2.31 (3)3.0664 (19)0.80 (2)2.43 (2)3.1383 (17)

Symmetry codes: (ii) -x+1, -y+2, -z+1; (iii) -x+1/2, y-1/2, -z+3/2; (iv) x-1/2, -y+3/2, z+1/2; (v) -x, -y+2, -z+1; (vi) -x+1/2, y+1/2, -z+1/2; (vii) x-1, y, z; (viii) -x+1, -y+1, -z+1.